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Predicting Pharmaceutical Demands to Treat Influenza at a Regional Hospital 

Each fall, Western Slope Community Hospital (WSCH), a fictional hospital in Colorado, 

faces a sharp increase in the number of patients admitted with a common influenza virus. While 

hospital administrators recognize that flu cases increase seasonally, they do not have a systematic 

way to anticipate the number of cases day by day or week by week. Accurately predicting flu 

cases is essential because having sufficient antiviral medication on hand is critical for patient 

health. As Nicoll et al. (2012) and Dumiak (2012) wrote, effective antiviral treatment strategies 

are an indispensable part of addressing influenza cases. Nicoll et al. (2012) discussed the 

importance of preparing for large-scale viral infections, noting among essential steps local 

preparedness and antiviral treatment and vaccination strategies. Concerning the H1N1 influenza 

pandemic, Dumiak paraphrased Dr. Nahoko Shindo from the World Health Organization’s 

(WHO) Global Influenza Programme, writing “available data show that antivirals helped to save 

lives” (2012, p. 800).  

The WSCH CIO tasked the WSCH data analytics team with addressing the data problem 

of needing to accurately predict the demand for antiviral medication a week or two ahead of time 

so that the hospital would be adequately prepared for sudden increases in influenza cases. The 

team confirmed with the pharmaceutical department that having one week lead time would be 

sufficient for ordering antiviral pharmaceuticals in time to meet patient needs.  

Literature Review 

Several studies concerning predictive analysis for influenza outbreaks referenced Google 

Flu Trends (GFT). Pervaiz, Pervaiz, Rehman, and Saif (2012) explained that “the Google Flu 

Trends service was launched in 2008 to track changes in the volume of online search queries 
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related to flu-like symptoms.” Pervaiz et al. (2012) wrote that GFT was designed to indicate 

changes in the number of disease cases - but not as a system to detect epidemics. Even so, 

researchers found that GFT was useful in predicting influenza outbreaks. Malik, Gumel, 

Thompson, Strome, and Mahmud (2011) used data from the 2009 H1N1 pandemic waves in 

Manitoba to plot weekly counts of laboratory-confirmed H1N1 infections against three 

indicators: GFT data and two Emergency Department (ED) data points: the weekly count and the 

percentage of all ED visits treated as influenza-like illness (ILI) cases. They fitted a linear 

regression model separately for each indicator and found that all three indicators peaked one to 

two weeks earlier than the epidemic curve of cases confirmed by laboratories. Their best-fitting 

model for GFT data was ahead of the epidemic curve by two weeks, while their best-fitting 

models for each of the ED indicators was ahead by one to two weeks.  

Dugas, Jalalpour, Gel, Levin, Torcaso, Igusa, and Rothman, (2013) similarly created 

multiple models to forecast United States influenza cases from 2004–2011. They wrote that their 

goal was “to provide individual medical centers with advanced warning of the expected number 

of influenza cases, thus allowing for sufficient time to implement interventions” (Dugas et al., 

2013, p. 1). They used the weekly counts of laboratory-confirmed influenza cases, GFT data, 

meteorological data, and temporal information when creating their models. They trialed a few 

algorithms, including classical Box-Jenkins, generalized linear models (GLM), and generalized 

linear autoregressive moving average (GARMA). Dugas et al. (2013) found that a GARMA(3,0) 

forecast model with Negative Binomial distribution using ED and GFT data provided the most 

accurate influenza case predictions. They found that meteorological and temporal data did not 

improve predictions. They concluded, “integer-valued autoregression of influenza cases provides 
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a strong base forecast model, which is enhanced by the addition of Google Flu Trends” (Dugas et 

al., 2013, p. 1). 

Unfortunately, over time, GFT lost its ability to predict flu outbreaks. March 27, 2014, 

Arthur (2014) wrote that GFT had overestimated the number of flu cases for 100 of the previous 

108 weeks. Leber (2014) similarly reported GFT’s inaccurate predictions, noting that they were 

often no better than the Center for Disease Control’s (CDC’s) predictions. Martin, Xu, and Yasui 

(2014) wrote that GFT was re-calibrated in 2009 (after missing the first wave of the H1N1 

pandemic in the United States) and prior to the 2013–2014 flu season (after overestimating the 

2012–2013 flu season and predicting its peak three weeks late). Martin et al. (2014) suggested 

that the GFT modeling had weakened in part due to changes in users’ search behavior and in part 

due to changes to the Google search algorithm. GFT data is no longer published and so was 

unavailable to the WSCH data analytics team. The team found that the CDC publishes weekly 

surveillance data (summarized nationally and regionally) representing instances of both 

lab-confirmed flu cases and ILI cases. 

Analysis 

Analyzing Data Sources 

The WSCH data analytics team analyzed data available from the CDC’s “National, 

Regional, and State Level Outpatient Illness and Viral Surveillance” page. The team used data 

representing Region 8 (Colorado’s region) and identified a subset of variables that were 

appropriate for the predictive analytics project. The team noted that CDC data were reported in 

year-week intervals (such as 2019, week 3), a time frame that was appropriate for the current 

project.  
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The WSCH data analytics team downloaded all available data for Region 8 from the 

CDC’s “National, Regional, and State Level Outpatient Illness and Viral Surveillance” page. The 

data were delivered as a zip compression file containing four Comma Separated Values (CSV) 

files with ILI data and confirmed flu cases data from 1997 to present. ILI data existed in a single 

file. It was reported as the percentage of physician visits related to ILI. Confirmed flu cases were 

represented in three CSV files: (1) data from clinical laboratories since the 2015 flu season, (2) 

data from public health laboratories since the 2015 flu season, and (3) combined data from both 

clinical and public health laboratories prior to the 2015 flu season. The data began in 1997. The 

data analytics team chose to use data from the last 10 flu seasons since the EMR system from 

which additional data would be extracted came online in early 2008.  

The team extracted a subset of data from the CDC’s Region 8 ILI data: the weekly 

summary information representing (1) weighted percentage ILI, (2) ILI total count, and (3) total 

patient count. The team also extracted a subset of data from the CDC’s Region 8 lab-identified 

flu cases. The weekly summary information that was retained represented (1) the specimen 

count, (2) the count that tested positive for A, (3) the count that tested positive for B, (4) the 

percent positive, (5) the percent positive for A, and (6) the percent positive for B. These fields 

were computed for weeks from the 2015-2016 flu season on, since the clinical and public health 

data needed to be combined. They were also computed for earlier flu seasons because numbers 

were reported in finer detail (listed by flu subtypes). Finally, the team derived four weekly 

summary data points from WSCH’s EMR system: (1) the number of ED cases, (2) the number of 

ED cases with ILI, (3) the Percent of ED cases that presented with ILI, and (4) the number of 

patients that began flu-specific antiviral medication (the target variable). The team considered a 
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visit to be an ILI case if the patient’s chief complaint included one of a handful of flu symptoms, 

including weakness, shortness of breath, cough, fever, and sore throat. See Table 1 for the 

complete list of variables included in the study. 

Table 1 
 
Variables Used for the Influenza Predictive Modeling project 

Variable Source Raw or Derived? 

Year - - 

Week - - 

EMR_Count_Total_ED_Cases WSCH EMR Derived: Weekly sum 

EMR_Count_ED_Cases_with_ILI WSCH EMR Derived: Weekly sum 

EMR_Pct_ED_Cases_with_ILI  WSCH EMR Derived: Weekly ratio 

EMR_Count_Patients_Start_Meds* WSCH EMR Derived: Weekly sum 

ILI_Weighted_Percent CDC ILI data Raw 

ILI_Count_ILI_Cases CDC ILI data Raw 

ILI_Count_Total_Cases CDC ILI data Raw 

LAB_Count_Total_Specimen CDC Lab data Derived** 

LAB_Count_A_Positive CDC Lab data Derived** 

LAB_Count_B_Positive CDC Lab data Derived** 

LAB_Pct_All_Positive CDC Lab data Derived** 

LAB_Pct_A_Positive  CDC Lab data Derived** 

LAB_Pct_B_Positive CDC Lab data Derived** 

 
* EMR_Count_Patients_Start_Meds (the count of patients beginning antiviral 
medications) is the target variable. 
** Varies by data source: Raw in CDC Clinical data since 2015; derived from CDC 
Public Health and Combined data. The raw CDC Clinical data and derived CDC Public 
Health data was combined together for data since the 2015 flu season,  
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The WSCH data analytics team created a composite data source with one row for each 

year-week. Columns represented the EMR’s ED data (Total Count of ED cases, Count of ED 

cases with ILI, Percent of ED cases with ILI, and Count of Patients Beginning Antiviral Meds: 

the target variable), the CDC’s ILI data (ILI Weighted Percent, ILI Patient Count, and ILI Total 

Patient Count), and the CDC’s laboratory data (Lab Specimen Count, Lab A Positive Count, Lab 

B Positive Count, Lab All Percent Positive, Lab A Percent Positive, and Lab B Percent Positive). 

The Count of Patients Beginning Antiviral Meds was identified as the target variable (rather than 

a related measure such as doses of antiviral medications dispensed) so that each case treated as 

influenza would be counted only once.  

Identifying Appropriate Predictive Models  

As Mehler wrote (2017), specific predictive analytic problems require different 

algorithms. For example, Mehler suggested that classification algorithms are useful for questions 

concerning customer retention and recommendation systems, clustering algorithms are useful for 

segmentation, and regression algorithms are useful for predicting calendar-driven outcomes. Ray 

(2015) further clarified that regression algorithms are useful for forecasting and for discovering 

causal relationships between variables. In the current scenario, regression algorithms were 

determined to be the most useful choice. 

Based on the accurate predictions Malik et al. generated with a linear regression model 

(2011), the team included a linear regression model in their project. Based on the work by Dugas 

et al. (2013), the team generated models using classical Box-Jenkins and generalized linear 

autoregressive moving average (GARMA) algorithms. In addition, the team noted that input 
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variables were likely to be correlated and so they considered regression models that Ray (2015) 

stated were robust to multicollinearity. Following his guidance, they chose to build models using 

Ridge Regression and Lasso Regression. The data analytics team also decided to use a SAS 

Enterprise Miner Ensemble node to generate a model using the two models that performed the 

best.  

Afzali, Gray, and Karnon (2013) emphasized the importance of validating and comparing 

models, writing “for the model to be a practical means of informing policy decisions, decision 

makers must have confidence that the model presents an accurate reflection… Central to these 

guidelines is a framework to improve the accuracy, and hence the credibility, of decision analytic 

models.” (p. 86). The data analytics team decided to use SAS Enterprise Miner to generate and 

compare regression models in order to have confidence that the models used were more effective 

than their counterparts. The team planned to compare models of the same type in order to 

identify the most accurate model within a given type (such as Lasso regression models), as well 

as to compare models of different types to identify the most accurate predictive model overall.  

Methodology 

Data Acquisition 

The WSCH data analytics team downloaded the CDC’s weekly influenza report from the 

CDC’s “National, Regional, and State Level Outpatient Illness and Viral Surveillance” page, 

pulling ILI and lab data for Region 8 from 2008 to present. It also exported weekly summary 

data from the EMR system from 2008 to present. Using Python, the team created a composite 

table that included columns of data from each of the sources (see Table 1 for the columns in the 

composite table). To have updated data for future predictions, the team also created an automated 



PREDICTING PHARMACEUTICAL DEMANDS 8 

process to retrieve the previous week’s data from the CDC’s website and the WSCH EMR 

system. Data values were then appended to the data source table.  

Configuring SAS Enterprise Miner and Generating Models 

The WSCH data analytics team chose to use SAS Enterprise Miner for the influenza 

prediction project because SAS Enterprise Miner has several features that were important for the 

project. First, SAS Enterprise Miner easily connects with the data. Next, it has some nodes that 

use the predictive modeling algorithms that the team planned to use, including linear and Lasso 

regression models. As well, SAS Enterprise Miner has open source integration nodes that allow 

the team to include additional models written in R. As well, SAS Enterprise Miner has an 

Ensemble node that generates a predictive model based on existing models. Finally, it has a 

Compare Models node that makes it easy to compare predictive models’ performances.  

The WSCH data analytics team created a new project in SAS Enterprise Miner. Next, 

they created a data source object linked to the composite table containing relevant weekly 

summary CDC and EMR data. The data source was added to a new diagram and the variable 

representing the number of patients who began an antiviral medication was identified as the 

target variable. Output from the data source was linked to a StatExplore node to produce 

summary statistics for the variables. The variables were reviewed, and all were confirmed to 

have been identified as numeric. Variables with missing values were noted for later imputation. 

Brown (2016) wrote that skewness above 1 or below -1 represents highly skewed data. Variables 

with “highly skewed” data by that definition were also identified. A Graph Explore node was 

linked to the output of the StatExplore node to inspect the dataset; it provided a detailed view of 
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the data. Data were inspected for erroneous data. Data that was suspected to be erroneous was 

updated (if possible) or imputed (if necessary) if confirmed to be erroneous. 

The data were then partitioned into 70% training and 30% validation datasets using a 

Data Partition node. Since Regression nodes reject observations with missing values, and since 

they work best with normalized data, data were then imputed and transformed as needed before 

being used by the predictive models. Values were imputed with an Impute node configured to 

impute missing values using the mean (as all variables contained numeric values). Next, values 

were transformed. A Transform Variables node was added to the diagram, linked to the Impute 

node’s output. In the Properties Panel, under “Train” properties, “Formulas” was selected to see 

histograms for variables with skewness greater than 1 or less than -1. Variables were transformed 

using transformations that were appropriate to reduce skewness. A second StatExplore node was 

added to the diagram receiving the output of the Transform Variables node to confirm the 

skewness was adequate. This second StatExplore node was also used to confirm that no variables 

had missing values after imputing occurred. 

The output from the second StatExplore node was linked to a Control Point node, which 

linked to several models: linear regression (using a Regression node), classical Box-Jenkins 

(using an Open Source Integration node), GARMA (using an Open Source Integration node), 

Ridge (using an Open Source Integration node), and Lasso Regression (using an HP Regression 

node configured with the “Lasso” method).  

Each of the models was run with a variety of configuration settings. Where appropriate, a 

SAS Code node was used to automate using different configuration settings. For each model 

type, the team used a Model Comparison node to compare different versions of the same type of 
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model in order to identify the configuration settings that resulted in the best performances. For 

each model type, the configuration settings of the best performing model were used in the final 

SAS Enterprise Miner diagram. All of the finalized models were compared by linking them to a 

Control Point node, which was then linked to a Model Comparison node to compare the best 

version of each algorithm in order to identify the most accurate predictive model overall. The 

two top performing models were then linked to an Ensemble node, which was also linked to the 

Control Point node that linked to the Model Comparison node so that the Ensemble model could 

be compared with the other five models (see Figure 1).  

 
Figure 1. The final SAS® Enterprise Miner™ diagram, with data pre-processing, several 
models, and a model comparison node.  
 

Conclusion 

This predictive analytics project addressed the need for anticipating peaks in influenza 

cases ahead of time so that a hospital could be prepared to meet patient needs. Cases of influenza 

are notoriously difficult to predict. As the CDC wrote on its “Frequently Asked Flu Questions 
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2018-2019 Influenza Season” web page, “it is not possible to predict what this flu season will be 

like. While flu spreads every year, the timing, severity, and length of the season varies from one 

season to another.” 

While WSCH administration was most concerned about having an adequate supply of 

antiviral medication on-hand for influenza outbreaks, research to solve the problem identified 

that best-practice planning for outbreaks would require additional steps. Dugas et al. explained 

that an influenza forecast model “could increase planning capabilities beyond simply the next 24 

hours, giving hospitals the crucial time needed to prepare for increased patient volumes whether 

through distribution or purchase of supplies, increased staffing, or opening additional annex 

areas to increase bed capacity” (2013, p. 3).  

WSCH administration could use the predictive model in a variety of ways. Since the 

WSCG administration has an online reporting system for planning purposes, the number of 

anticipated flu cases could be added to the interface. Data from the hospital pharmacy’s 

inventory system could also show the number of doses of antiviral medications on-hand, along 

with a note about the number of doses that are required for a given patient’s treatment. The 

number of anticipated flu cases could also be integrated into a staff scheduling page, perhaps 

with an indicator if the number exceeded a threshold value, so that people involved in scheduling 

staff would know that additional staff would likely be needed. This indicator could also be useful 

if additional areas of the hospital needed to be made available to accommodate the increased 

patient load.   
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